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SOME RELATED PROBLEMS OF FILTRATION AND HEAT
CONDUCTION IN POROUS BODIES

V. M. Entov and N. Shyganakov UDC 532.685

An examination is made of a dynamically similar boundary-value problem describing the uniform
motion of a liquid or gas initiated by intensive heat flow to a porous body.

1. We will examine the motion of a uniform liquid in a porous body under nonisothermal conditions. We
will assume that the time required to establish local thermal equilibrium is short and that we can use a one-
temperature model. We then have the system of equations (see [1], for example):

ko wwya, @
B
_"%ﬁ + divd =0, @
i@ﬁgﬂ + div (iJ) 4 divq = 0, ()
=—wT, i=i(p, T) p=pp T A=i( 1), w=p(p 1) “

The function & (J) describes the filtration law. With the chosen form, system (1) covers a variety of cases of
nonisothermal motion of liguids and gases in a porous medium with both a linear and a nonlinear filtration law.
Tt was used in {11 to study temperature changes connected with the Joule—Thompson effect in the nonsteady
flow of gas to wells. Below we examine what is in a sense the opposite problem: the motion of a liquid or gas
initiated by intensive heat flow to a porous body.

2. Let a half-space x = 0 at the initial moment of time be filled with a moving gas with a constant pres-
sure p, and temperature T, and let certain new values of pressure and temperature p; and T, be established at
the boundary beginning with the moment £ = 0. The resulting unidimensional motion satisfies the conditions
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plr, O=py T 00=T, pO t)=p, TO ) =Ty (5)

If the Darcy law [& (j) = j] is valid, then it is easy to see that the motion is dynamically similar and can be
written as

p )=p®, T )=T@F, tE=xayt, (6)
where p(£) and T(¢) satisfy the system of equations

d_ (ke dp) . E dp _
dt <;»m d&)T 2 4

, , . (7
_Li_(xgz)Jr@ LR mi?_+cﬂ)=o
dg dg wodf dg 2 dE dk
with the boundary conditions
p(0)=py pO)=py, T(o0)=T, T(O)=T,. (8)

Here, a? is the dimensional constant of diffusivity. Its form can be chosen in each specific case so that the
equations of the problem will have the simplest form.

In particular, let the fluid saturating the pore space be a thermodynamically perfect gas, and let the
porosity, permeability, viscosity, and thermal conductivity be independent of the pressure and temperature.
Then

0 =00pTo/(Tpy), i=C,T (9)
and Eqs. (7) take the form

k _d_(p dp\ & dp b 4T,
apm dt \ T dt )  oT dt or= g 10)
de ST TG G AT | E (TG () O
Caz dg up,CT  dE dE pTC e
We set
h kp,C mp,C
= = pof, T=Te®, y=-—P  p= 0P
o2 c p=pd 0 x “hum v )
We have the problem
4 Li%l_é_ﬂf_ & 49
ng(@ e 9 O 4 20 &
R) ;I odi d 3 ( f )d@
av L AT R (PPN ) s (11)
® e e e Y@+ dE

8 (00) = f(o0) = 1, 0(0) =0, = T4/T,, F(0) = [ = piPo.

Let us examine the case when the perturbation is created by a thermal wave, f; =1. If the intensity of
the wave (¢ = |@; — @,]) is not great, then the problem is solved by an expansion in the small parameter:

0 =14 &b () + 0+ --->

, (12)
F=1+ e+ e () +
Substitution into (11) gives dzﬁo 1 £(1 4y o dﬁo _
@ 2 >
2, 1 . do, I, db,
— E—r =t —>
X dez 3y 9 dE 2 dg : (13)
@9, 1 dd, dg, db,
EEEIESY 1 — = T T
T +2 O+ & Xy & &
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B, (0) = 1, ¥y (00) = U5 (0) = ¥ (00) = ¢y (0) = @y (00) = 0.

As a result, we have {2, 3]

Bo=1l—erfE VYT 12, g =lerfEy v+ 1/2) —erf &2V )Wy -+ x— 1), (14)

1‘}1=j‘ exp (———1—:——1— g?‘) [Cl"“kl'l/ﬂ—'t_(erf 2‘5&_ —erf 1/12+'\’ E)
1

dE,

where

2vx 4

ky=yv vV T+ v/lnlxy +x— 1] (see Fig. 1a).

CI:k1V1+yj (erf £ —erfl/—yQi-l—g) exp (_V__l gz) de:
[4]

The curves in Fig. 1 correspond to the parameters y and y, calculated with the values p =17.2 - 1078,
Cp =10 (for air at 20°C), k =1.02 - 1071, 1.02 - 107%, 1.02 - 1071, A =1.75, m =0.25, C =2.72 - 105, p, =1,
Py =0.0981, AT =300°K, T = 293°K.

As might be expected, the absolute values of the increment in intrapore pressure increase with a decrease
in permeability and approach the values that would be obtained for an impermeable specimen (with the given
temperature increment, the pressure maximum is 0.196 MPa).

The case in which heating occurs on the side of the boundary impermeable to gas is interesting in certain
applications.
Formulation of the problem and the scheme of expansion in the small parameter are the same as before,
with only the boundary condition for the dimensionless pressure changing to
F/(0) = @ (0). (15)
The corresponding solution, obtained by small-parameter expansion of the intensity of the thermal wave

g, has the form
8, = 1 —erf[E Vv + 121,

VIFT (et —S o f__EVv__.H), (16)
P T 1 (Vxer 5y Vel 2
vl — 1 EVy+1 oy 3 )]
0= [ e (- : gz) [Cerkz Vi ( et i wert ]| &

where

T f y+ 1 1 EVYEL E Y .
Co=—k, Vy+1§ exp (_ ; §2)< S erf 2T 1 erf T )ag,

by =y (v + Dy + 1 — DI

(see Fig. 1b).

The pressure increment in the "sealed” specimen prove to be somewhat higher than in an open specimen
for numerical values of the parameters coincident with those examined above, but this difference decreases at
low permeabilities.

3. If the porous body is filled with an elastically compressible fluid instead of a gas, then for uniform
motion we have the system of equations
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Fig. 1. The first two terms of the temperature ex-
pansion and the first term of the pressure expansion
for the case of motion of a gas in a porous body: a)
with a permeable surface; b) with an impermeable
surface; 1) k = 10715 2) 107%; 3) 10-17 m?.
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Fig. 2. Temperature and pressure perturbation for
a fluid in a porous body with a permeable surface:
1) A =100;5 2) 173; 3) 250.

T, @ /04
310
qo4 8
L - 05
qoz a4
) @y /0.?

e 0'2

g 2. % & £

Fig. 3. The first two terms of the temperature ex-
pansion and the first term of the pressure expansion
for the case of a fluid in a porous bhody with a per-
meable surface.



0%P oP (0P 06 0
T (20
X X b4

Here

P=poll +pK—a(T—To); P=plK; @=a(T—Ty). x=FkK/(mp);
X = K/(C'po)

The problem of a thermal wave again permits a dynamically similar solution

. x ¥C"0g %
P = P ) @ == 9 s = ———— 2 = = N
® © ¢ aVt ¢ C -+ mC'pq A
being a solution of the problem
@p  (E 49 dj’.)ﬂ_i ® _,
dg? ( 2A dg dg /| dt 24 dg
x @0 [ x Ef’_)i@l:o, A= _C_H)zlL
mn  dE? + ( 2mx &+ dt ) d§ (C’m %

P(0)=P(x0)=0, 8(0)=¢ ©(c0)=0.

an

(18)

(19)

(20)

The results of calculation of the dynamically similar solution for the boundary-value problems P(0) =
P(o) = @ko) =0, ®0) =0.05 and the parameter values p = 0.1, k =1.02 - 1071, m =0.25, p, =1000, A =1.745,

K =1961 MPa, o =4.6 - 107* (at 40-60°C), C =2.72 - 10, C' =4.17 - 10° are shown in Fig. 2.

It is obvious that, except for particularly "severe" regimes, the filtrative motions caused by the thermal
shock will be weak, and they too can be analyzed by means of the small-parameter method. Assuming @(0) =

£ K 1, we have

O="=3,+ed + ..., 9{0)=¢g, g{o0}=8;4(0)=F;(00)=0,

P=Py+ ..., Py(0) = Py(c0) =0,

B B dd, o PP, E dP, T O

—

g 2 dt d22 | 24 dE  2A Gt
@ A b dPy db
mx  dE omx dt  dt dE

From which

Oy =ce[l —erf(§/2)], P,= As 1 (erfwi———erf 252 ).

0={ [ V“k( £ £ ] (_g_z _
1§[+n3erf2 ersz,‘q")EXp 4d§.

where

mx

Cszkf erf E* -—erf—-g—— exp ——g—z) dg;, ky=—-
7 2VA 2 4] 4007y (A — 1)

(see Fig. 3, ¢ = 0.05).
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NOTATION

j, mass filtration velocity; p, fluid pressure, Pa; T, temperature; i, enthalpy; p, fluid density, kg/m?
w, fluid viscosity, N » sec /m? m, porosity of the medium; k, permeability of the porous medium, m? A, thermal
conductivity of the fluid—porous-medium system, W/m - deg; C, volumetric specific heat of the porous medium,
J/(m3 . deg); Cp, specific heai of the gas at constant pressure, J/ (kg - deg); C', specific heat of the liquid,
J/ (kg - deg); K, compressive bulk modulus, N/m?% a, coefficient of cubical expansion, deg~1.
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STEADY-STATE PROBLEM OF LOCAL PORE COOLING

V. V. Faleev UDC 536.244

The temperature field in a porous half-space with filtration of coolant from a source is examined.

Pore cooling has come into use in recent years in several sectors of modern industry to protect various
structural elements from high heat fluxes. The high efficiency of this method of cooling is due to the developed
surface with which the coolant is in contact during its motion through the porous medium. As a result of this,
heat is absorbed, and the boundary layer at the leakage surface is transformed in such a way that heat transfer
from the high-temperature gas flow to the wall being protected is reduced.

Together with the continuous supply of coolant through the wall [1], in our opinion coolant can also be
supplied to certain local zones in some cases. This produces zonal pore cooling and creates the thermal re-
gime reduired for the most heavily thermally stressed sections.

An important task in designing such systems is studying the temperature fields inside porous materials
with allowance for the filtration processes occurring. To solve this problem, it is first necessary to construct
the solution of the two-dimensional filtration problem and obtain the pressure distribution in the porous body.
The heat-transfer equation can then be used with this data to find the temperature field.

Let us examine this problem using the example of coolant flow in a porous half-space (Fig. 1a [2]). We
will agssume that the cooling gas is moving in an undeformed, uniformly porous medium from a source of inten-
sity 2M, located af point A, to the leakage surface. Constant pressure p, and temperature T, are maintained
at the leakage surface, while the pressure and temperature at the source are p; and Ty, respectively. The
thermophysical characteristics of the gas and the porous material are assumed to be constant, and equality is
maintained between the temperatures of the body and the coolant at any point of the filtration region.

The gas flow in the porous medium obeys the resistance law
i V) 5
— gradp= — 1L V. (1)
w(T) 1%
The process of heat and mass transfer is described by the equations:

AT —cpV grad T =0, (2)
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